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Abstract

An input/output-link control protocol is modeled and analyzed in the real-time model checker
UpPAAL. The protocol is supposed to sit in an audio/video component and control (read from
and write to) a link to neighbour audio/video components. The component may for example be
a TV, and a neighbour may be a VCR. The protocol also communicates with the remote—control.
The protocol is in addition responsible for the powering up and down of the component in between
the arrival of data. It is this power control that is the focus of the modeling and verification
demonstrated in this report. The work has been carried out in a collaboration between Aalborg
University and the audio/video company B&O, which plans to incorporate the protocol as part of
a new product line. The work was carried out in a limited period of 3 weeks, with an attempt to
examine how well such a collaboration would proceed. The paper elaborates on the lessons learned.
Amongst technical results are techniques for modeling transitions that take time, and interrupts.
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Chapter 1

Introduction

Since the basic results by Alur, Courcoubetis and Dill [1, 2] on decidability of model checking
for real-time systems with dense time, a number of tools for automatic verification of hybrid and
real-time systems have emerged [5, 11, 8]. These tools have by now reached a state, where they
are mature enough for application on industrial case—studies as we hope to demonstrate in this
report.

One such tool is the real-time verification tool UPPAAL [5] developed jointly by BRICS! at
Aalborg University and Department of Computing Systems at Uppsala University. The tool pro-
vides support for automatic verification of safety and bounded liveness properties of real-time
systems and contains a number of additional features including graphical interfaces for designing
and simulating system models. The tool has been applied successfully to a number of case—studies
[10, 14, 3, 4, 13, 7] which can roughly be divided in two classes: real-time controllers and real-time
communication protocols.

Industrial developers of embedded systems have been following the above work with great in-
terest, because the real-time aspects of concurrent systems can be extremely difficult to analyse
during the design and implementation phase. One such company is Bang & Olufsen (B&O) — hav-
ing development and production of fully integrated home audio/video systems as a main activity.

The work presented in this report documents a collaboration between AUC (Aalborg University
center) — under the BRICS project — and B&O on a case study based on one of the company’s new
designs: a protocol for audio/video power control, that is currently being designed. The protocol
is supposed to sit in an audio/video component and control (read from and write to) the link to
neighbour components. The component may for example be a TV, and a neighbour may be a VCR.
The protocol also communicates with the remote control. The protocol is furthermore responsible
for the powering up and down of the component in between the arrival of data. It is this power
control that is the focus of the modeling and verification.

The collaboration between B&O and AUC spanned 3 weeks (4 including report writing), and
was very intense the first week, where a representative from B&O visited AUC, and a first sketch
of the model was produced. During the next two weeks, the model was refined, and 15 properties
formulated by B&O in natural language were formalized and then verified using the UPPAAL model
checker. During a meeting, revisions to the model and properties were suggested, and a final effort
was spent on model revision, re-verification and report writing. The present report is an intensive
elaboration of the preliminary report [9]. The B&O representative was Johnny Kudahl, and we
thank him for being extremely collaborative and productive, as well during the model building as
in formulating the properties to be verified.

The work is a continuation of an earlier successful collaboration between the same two organisa-
tions, where an existing audio/video protocol for detecting collisions on a link between audio/video
components was analyzed and found to contain a timing error causing occasional data loss. The

IBRICS - Basic Research in Computer Science — is a basic research centre funded by the danish government at
Aarhus and Aalborg University.



interesting point was, that the error was a decade old, like the protocol, and that it was known
to exist — but normal testing had never been sufficient in tracking down the reason for the error.
This work is described in [10].

During the development of models, we found that the notion of timed automata and their
graphical representation served extremely well as a communication medium between the industrial
protocol designer and the tool expert doing the simulation and verification. In addition, the
graphical simulation features of UPPAAL lead to fast detection of (obvious) errors in the early
models. All analyzed properties were satisfied, although some of the verification results indicated
critical timing constants that should be obeyed in order to keep the protocol correct. As a technical
contribution, techniques for modeling timed transitions and interrupts are presented. A timed
transition is a transition which consumes time, like code in a program which takes time to execute.
It is a special circumstance, that processes run on a single processor.

The report is structured as follows. In chapter 2 we present the UPPAAL modeling language and
tool. In chapter 3 we present some techniques for modeling timed transitions and interrupts in the
UPPAAL language. Chapter 4 contains an informal description of the B&O protocol. Chapter 5
presents the formal modeling of this protocol in the UPPAAL language, while chapter 6 presents
the verification results. Chapter 7 provides an evaluation of the project, an evaluation by each of
the participants: B&O and AUC. Finally chapter 8 contains a conclusion.



Chapter 2

The UrPAAL Model and Tool

UPPAAL is a tool box for symbolic simulation and automatic verification of real-timed systems
modeled as networks of timed automata [2] extended with integer variables. More precisely, a
model consists of a collection of non—deterministic processes with finite control structure and
real-valued clocks communicating through channels and shared integer variables. The tool box is
developed in collaboration between BRICS at Aalborg University and Department of Computing
Systems at Uppsala University, and has been applied to several case—studies [10, 14, 3, 4, 13, 7].

The current version of UPPAAL is implemented in C++, XFORMS and MOTIF and includes the
following main features:

e A graphical interface based on Autograph [6] allowing graphical descriptions of systems.
e A compiler transforming graphical descriptions into a textual programming format.

e A simulator, which provides a graphical visualization and recording of the possible dynamic
behaviors of a system description. This allows for inexpensive fault detection in the early
modeling stages.

e A model checker for automatic verification of safety and bounded-liveness properties by
on—the—fly reachability analysis.

e Generation of (shortest) diagnostic traces in case verification of a particular real-time system
fails. The diagnostic traces may be graphically visualized using the simulator.

A system description (or model) in UPPAAL consists of a collection of automata modeling the
finite control structures of the system. In addition the model uses a finite set of (global) real-valued
clocks and integer variables.

Consider the model of figure 2.1. The model consists of two components A and B with control
nodes {AO, A1, A2, A3} and {BO, B1, B2, B3} respectively. In addition to these discrete control
structures, the model uses two clocks x and y, one integer variable n and a channel a for commu-
nication.

The edges of the automata are decorated with three types of labels: a guard, expressing a
condition on the values of clocks and integer variables that must be satisfied in order for the edge
to be taken; a synchronization action which is performed when the edge is taken forcing as in CCS
[15] synchronization with another component on a complementary action!, and finally a number of
clock resets and assignments to integer variables. All three types of labels are optional: absence of
a guard is interpreted as the condition true, and absence of a synchronization action indicates an
internal (non-synchronizing) edge similar to 7—transitions in CCS. Reconsider figure 2.1. Here the
edge between A0 and Al can only be taken, when the value of the clock y is greater than or equal

1Given a channel name a, a! and a? denote complementary actions corresponding to sending respectively
receiving on the channel a.
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Figure 2.1: An example UPPAAL model

to 3. When the edge is taken the action a! is performed thus insisting on synchronization with B
on the complementary action a?; that is for A to take the edge in question, B must simultaneously
be able to take the edge from BO to B1. Finally, when taking the edge, the clock y is reset to 0.

In addition, control nodes may be decorated with so—called invariants, which express constraints
on the clock values in order for control to remain in a particular node. Thus, in figure 2.1, control
can only remain in AQ as long as the value of y is no more than 6.

Formally, states of a UPPAAL model are of the form (I,v), where [ is a control vector indicating
the current control node for each component of the network and v is an assignment given the
current value for each clock and integer variable. The initial state of a UPPAAL model consists of
the initial node of all components? and an assignment giving the value 0 for all clocks and integer
variables. A UPPAAL model determines the following two types of transitions between states:

Delay transitions As long as none of the invariants of the control nodes in the current state are
violated, time may progress without affecting the control node vector and with all clock
values incremented with the elapsed duration of time. In figure 2.1, from the initial state
((A0,B0),x = 0,y = 0,n = 0) time may elapse 3.5 time units leading to the state ((A0,B0),x =
3.5,y = 3.5,n = 0). However, time cannot elapse 5 time units as this would violate the
invariant of BO.

Action transitions If two complementary labeled edges of two different components are enabled
in a state then they can synchronize. Thus in state ((A0,B0),x = 3.5,y = 3.5,n = 0) the
two components can synchronize on a leading to the new state ((A1,B1),x =0,y = 0,n = 5)
(note that x, y, and n have been appropriately updated). If a component has an internal edge
enabled, the edge can be taken without any synchronization. Thus in state ((A1,B1),x =
0,y = 0,n = 5), the B-component can perform without synchronizing with A, leading to the
state ((A1,B2),x =0,y = 0,n = 6).

Finally, in order to enable modeling of atomicity of transition-sequences of a particular com-
ponent (i.e. without time—delay and interleaving of other components) nodes may be marked as
committed (indicated by a c—prefix). If in a state one of the components is in a control node
labeled as being committed, no delay is allowed to occur and any action transition (synchronizing
or not) must involve the particular component (the component is so-to—speak committed to con-
tinue). In the state ((A1,B1),x = 0,y = 0,n = 5) B1 is committed; thus without any delay the next
transition must involve the B—component. Hence the two first transitions of B are guaranteed to

2?indicated graphically by a double circled node



be performed atomically. Besides ensuring atomicity, the notion of committed nodes also helps in
significantly reducing the space—consumption during verification.

In this section and indeed in the modeling of the audio/video protocol presented in the following
sections, the values of all clocks are assumed to increase with identical speed (perfect clocks).
However, UPPAAL also supports analysis of timed automata with varying and drifting time—speed
of clocks. This feature was crucial in the modeling and analysis of the Philips Audio—Control
protocol [3] using UPPAAL.



Chapter 3

Timed Transitions and Interrupts

In this chapter, we shall introduce techniques for dealing with a couple of concepts that appear in
the protocol, and which are not supported directly by the UPPAAL notation. These concepts are
on the one hand time slicing in combination with time consuming transitions, and on the other
hand interrupts. We refer to time slicing as the activity of delivering execution rights to processes
that all run on the same single processor. Transitions normally don’t take time in UPPAAL, but
this occurs in the protocol. Interrupts is a well known concept.

First, we give a small example illustrating what we need. Then we suggest the techniques that
we shall apply in the modeling of the protocol.

3.1 The Problem

Assume a system with two processes A and B running on a single processor. Assume further, that
these processes can be interrupted by an interrupt handler. The situation is illustrated in figure
3.1, which is not expressed in the UPPAAL language, but rather some informal extension of the
language.

A Interrupt
O b)-Y'Si—)C: 2 C) a©
a
i =1
(2)
y
b
B j =2
(5)
O—b——0O—t+1+—>0 /
a b c cO

Figure 3.1: What we want to express

Each edge modifies a variable (A modifies x and y, B modifies v and w, and the interrupt handler
modifies i and j). These assignments only serve to identify the edges and have no real importance
for the example. Each edge is furthermore labelled with a time slot within parenthesis (2, 5, 7-12),
indicating the amount of time units the edge takes. The slot 7-12 means anywhere between 7 and
12 time units.



Suppose the interrupt handler cannot interrupt. Then the semantics should be the following: A
and B execute in an interleaved manner — each transition taking the amount of time it is labelled
with. No unnecessary time is spent in intermediate nodes (except waiting for the other process to
execute). At the end, as soon as both A and B are in the node c, at least 19 (2+ 5+ 5+ 7) and
at most 24 (245 + 5+ 12) time units will have passed.

An interrupt can occur at any moment and executes “to the end” when occurring. That is, it
goes from node a to c without neither A nor B being allowed to execute in the meantime. If we
assume that the interrupt handler can also interrupt, then it will change the above numbers to 26
(19+2+5) and 31 (24 +2+5).

Or goal is now to formulate this in the UPPAAL language.

3.2 A Wrong Solution to Timed Transitions

First, we shall try to model time consuming transitions, ignoring the interrupts for a moment. For
illustrative purposes we shall first provide a naive, and wrong, solution adding time consumption to
a UPPAAL graph in the standard way, by annotating nodes with time constraints. This is illustrated
in figure 3.2, which is now expressed in the UPPAAL language, like every other automata that follows
from now on.

A
=1 == ==
a s:=0 c d
(s<=2) (s<=5)
B

Figure 3.2: A wrong solution

The solution is based on introducing a clock for each automata A (s) and B (t). Each edge can in
addition to the variable modification be labelled with a guard on the clock and a initialization to 0
of the clock. The guard expresses the time consumed by the previous edge. Nodes are furthermore
labelled with time constraints: the time consumed by the edge leading to the node. For example,
consider automata A. When it leaves node a it initializes the clock s, and node b now represents
the time consumption of that edge. When the time has been consumed, (s equals 2) the next edge
is taken, and so on.

This solution does, however, not work since the two automata may consume time “together”.
For example, automata A may enter the node c and automata B may enter node b, and they may
then consume 5 time units “in parallel”. This corresponds to the fact that the A edge leading to
c (y := 2) executes in true parallel with the B edge leading to b (v := 1). This does not reflect
the desired behaviour, since A and B are supposed to run on a single processor, and their edges
must therefore execute interleaved.

We can demonstrate this by verifying the following desired — but in this model false — property:

A[] (A.d and B.d) imply gc >= 19

10



That is, when A and B both reach node d, at least 19 (2+ 5 + 5 + 7) time units must have
passed. The UpPAAL model checker rejects this property returning an error trace describing the
above situation.

3.3 Modeling Timed Transitions

The problem with the above solution is, that each process has control over time. In a single
processor setting it is natural to handle over time control to a single “operating system” process.
Figure 3.3 illustrates such a process, called Timer, using a local clock k.

Timer

w5 w712
(k<¥%) (k=12
k == 5

Figure 3.3: The Timer

It has a start node, named go, in which time is constrained to not progress at all. This means
that in order for time to progress, one of the edges t27, t57 or t7_127 must be taken. These
edges then lead to nodes where time can progress the corresponding number of time units, where
after control returns immediately (back is a committed node just used to collect the edges) to the
go node.

Now let us turn to the processes A and B, which are shown in figure 3.4. These now communicate
with the Timer, asking for time slots. Every time unit T that in the informal model, figure 3.1,
was in brackets (T) is now expressed as tT!. When for example A takes the edge from node a to
node b, the Timer goes into the node w2, and stays there for 2 time units while A stays in node b.
Hence, the time consumed by an edge is really consumed in the node it leads to. We have, however,
guaranteed that B for example, cannot go to the node b and consume time “in parallel” since that
would require a communication with Timer, and this is not ready for that before it returns to the
node go.

When A reaches the node c the first time, it has not yet consumed 7 time units (2 + 5), it has
only consumed 2. The 5 will be consumed while in node c. In order to reach a state where we
for sure know that all the time has been consumed, we add an extra d node, which is reached by
communicating finish! to the Timer. This forces the Timer to “finish” the last time consumption.
Now we can express the property that did not hold in the naive model, namely:

A[] (A.d and B.d) imply gc >= 19
This time, it holds. What also holds is:
A[] (A.d and B.d) imply gc <= 24

That is, if both A and B reach node d, then they will do so within 24 time units. Note that due
to the design of the Timer, time cannot progress further when that happens (the Timer will be in

11



A
x.:=1 N\ y =2 ~ finisht -

O—=1t>0O— =250 O

a b c d
B

=1 =2 finish!
O {5i O }N/_lz!_)o—)o
a b c d

Figure 3.4: A and B communicating with the Timer

the go node where time cannot progress). Of course one can design a Timer that allows time to
progress freely when asked to, and that is in fact what happens in the protocol, and which will be
explained. Basically one introduces an idle node in the Timer, that can be entered upon request,
and where time can progress without constraints.

3.4 Modeling Interrupts

Now we incorporate the interrupt handler. The basic idea is to give a priority to each process, and
then maintain a variable, which at any moment contains the priority currently active. Processes
with a priority lower than the current cannot execute. When an interrupt occurs, the current
priority is set to a value higher than those of the processes interrupted.

Processes A and B can for example have priority 0 while the interrupt handler gets priority 1.
When the interrupt occurs, the current priority is then set to 1, preventing priority 0 processes
from running. We introduce the variable cur for this purpose, see figure 3.5. The Timer stays
unchanged.

A Interrupt

a
@ cur == 0 cur_== 05 O finish!aO O
{(2;: 19( >_'—"—— 2 cur :

V= =
t5! =1
a b c d t2i

0O

cur := 0
1 :=
t 5!

B c )
C \c/u'r—zi OE C \(/:vu'r—zg 0 C finish! C finishi

o t5i b t7 12 g 3
10

1

Figure 3.5: Dealing with interrupts

Note how the variable cur occurs in guards of A and B, and how it is assigned to by the interrupt
handler. In this model, we can verify the following property to be true:

A[] (A.d and B.d and Interrupt.d) imply
(gc >= 26 and gc <= 31)

12



3.5 Test Automata

In this section we shall shortly describe how we can formulate and verify bounded liveness properties
about a model like the one just presented. Recall the previous properties that we showed, they all
had the form of a safety property:

At any moment, if in state S then P holds

However, nothing guarantees that we reach state S. For this we need a bounded liveness property
like:

Within T time units state S will be reached

We shall illustrate how this is expressed in UPPAAL. Suppose we want to prove that process B
will be in node d within at most 31 time units. For this purpose, we add a new node (e) to B, and
an edge from d to e labelled with the signal obs_end! (end of observation), see figure 3.6.

B e
obs_end
cur == 0 cur == 0 finish!
C:}———V_Tf_T__)<:>———w71?7
p t 5i b t7 12 C d

Figure 3.6: B modified to communicate with an observer

Observer
wait
obs_end?, gc > 31
good bad

Figure 3.7: The Observer

This signal will then be received by an observer process, that we add to the system, see figure
3.7. The channel obs_end is declared as urgent, hence it will be taken as soon as B is in node d.
The observer waits in the node wait until it either receives this signal or until more than 31 time
units have passed. If more than 31 time units pass before B reaches node d (and signals obs_end!),
the observer enters node bad. The property to be verified is then that the observer is never in
node bad:

A[] not Observer.bad

The UpPPAAL model checker verifies this property to be true. If we, however, modify the property,
replacing 31 with for example 30, then the property no longer holds, and UPPAAL will generate an
error trace showing the sequence of events that prevents B from reaching node d within 30 time
units.

13



Chapter 4

Informal Description of the Power
Down Protocol

In this chapter, we provide an informal description of the power down protocol. As advocated in
[12], we divide the description into environment, syntax, and protocol rules.

4.1 Protocol Environment

A typical B&O configuration (see figure 4.1) consists of a number of components, which are inter-
connected by different kinds of links carrying audio/video data and (or) control information. Some
of the components are intelligent (masters) in the sense that they control a number of (slave) com-
ponents and also communicate with other masters. Each master is equipped with a dual processor
system controlling audio/video devices and links, and among other tasks, the dual system must
minimize the energy consumption when it goes stand by. Due to physical laws! the dual system
cannot enter stand by mode via one atomic action, and the purpose of the present protocol is to
ensure that stand by operation is handled in a consistent way, i.e. when one of the processors
enters or leaves stand by, this is also recognized by the other processor. Furthermore, whenever a
master processor senses valid data on an external link, it must leave stand by operation.

Main Room . Other Rooms
Broadcast Bus .
MX-TV l
|
I
|
|
|
|
I
|
|
I
|
|
] ‘
|
] l
I
|
|
|
VX7000-VCR Audio Center |
|
— i
. I
|
|
I
|

Figure 4.1: Example B&O Configuration

Figure 4.2 illustrates the dual processor system. Each processor communicates with devices and
masters via external links, and the two processors are interconnected via an internal DMA link.

1Tt takes e.g. approx. 1 ms to make the processor operational when it has been in stand by operation.
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The AP processor acts as a master in the sense that it can command the IOP processor to enter
stand by. In this report, we describe a model for the power down protocol for the IOP processor.
However, it is foreseen that the model for the AP protocol will be almost identical.

AP 3002 10P 3212

ROM ROM RAM EPROM

Figure 4.2: The B&O Dual Processor System

4.2 Protocol Syntax

The power down protocol entity in a IOP processor communicates with its environment (AP
processor and external links) via the following protocol commands:

e {AP_down, AP _down_ack, AP_down nack, AP _active, L_start, L_activate, L_stop, L_running,
L_data, L_interrupt}

The L prefix above is generic in the sense that there is a set of commands for each external
link. The AP_down command orders the IOP processor to enter standby operation, whereas the
AP _active command indicates (to the AP) that the IOP has left standby. The L_interrupt command
indicates that an interrupt has been received from the link, whereas the remaining L_commands
are applied for controlling the link driver (start,stop,status etc).

4.3 Protocol Rules

In order to give an intuition on the protocol, we describe below in an informal way the major
protocol rules, which must be obeyed by the IOP protocol entity. We leave out the details on
driver communication, which will be described in the formalization chapter. In order to structure
the description, we define the following meta phases (see figure 4.3 below) for the entity: The
active phase, where the IOP is in normal (active) operation, the going_down phase, where the AP
processor has ordered the IOP to enter the stand_by phase, and the going_up phase, where the IOP
processor has decided to enter the active phase because it has sensed activity on one of its links.

Active rule In the active phase, the IOP protocol entity must enter the going_down phase, when-
ever a AP_down command is received from the AP processor

Going_down rule In the going_down phase, the IOP protocol entity must ensure that all link
drivers are inactive, and that there are no pending link interrupts. If this is fulfilled, the
entity must send an acknowledge to the AP processor and enter the stand_by phase (and set
the processor in stand by mode). Otherwise, the entity must send a negative acknowledge to
the AP processor, and reenter the active phase.
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AP_active

going_up

interrupt

AP_down_nack

going_down

AP_down_ack

Figure 4.3: Major Protocol Phases

Stand_by rule Whenever an interrupt is received in the stand_by phase, the IOP protocol entity
must start all link drivers and enter the going_up phase.

Going_up rule In the going up phase, the protocol entity must check if the invoking interrupt (in
the stand_by phase) was caused by signal noise on the link. If this is the case (and there are
no other interrupts in the system), the stand_by phase is reentered.? Otherwise, an active
command must be sent to the AP processor, and the the active_phase must be entered.

In the analysis chapter, we present a complete list of protocol requirements in terms of properties
of the formal protocol model. These detailed requirements subsumes the informal rules described
above.

2Noise is recognized via protocol command exchange with the link drivers. For simplicity reasons, this is described
as one single transition in figure 4.3.
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Chapter 5

Formalization in UPPAAL

In this chapter, we shall formalize the system in UPPAAL. We start with an overview of the com-
ponents and their interaction via channels and shared variables. Then we describe each component
in detail.

5.1 Overview

5.1.1 The Components

The system consists of 8 automata, as illustrated in figure 5.1. The main components are the AP,
the IOP, the LSL driver and the two interrupt handlers. As can be seen, several abstractions have
been performed to obtain this model from the full system. First of all, focus has been put on the
IOP, hence, the AP has been simplified considerably. For example, there is no AP driver, only an
LSL driver. Also, the IIC component (driver as well as interrupt handler) has been left out.
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I

Int Gen.
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Figure 5.1: The Components

The IOP, the LSL driver and the interrupt handlers can be seen as running on one processor,
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hence they are grouped together on the figure, together with some additional auxiliary automata:
Timer and Calc (calculator). The timer controls the time slicing between the components all
using the same processor as described in section 5.9, and the calculator component represents a
procedure, that is “called” by the LSL driver to perform some internal computation. We shall
refer to this collection of automata as the kernel, all running on one processor. The kernel runs
in parallel with the application process: AP. In addition, there is an environment which generates
interrupts corresponding to data arriving on the links; hence this environment is referred to as the
interrupt generator.

The components communicate via channel synchronization and via shared variables. The figure
illustrates the channel connections by fully drawn arcs, each going from one component (the one
that does a send “!”) to another (the one that does a receive “?”). Also, All shared variables are
plotted into the figure, in italics, with dotted lines indicating their role as message carriers, from
the process that typically writes to the variable to the process that typically reads the variable.
This notation is informal, but it should give an overview of the shared variables and the role they
play in communication.

We shall go though the channels and the shared variables below.

5.1.2 The Channels
AP /IOP Communication

The AP signals the IOP to go down by issuing an ap_down! (which the IOP then consumes
by performing a dual ap-down?). The channels ap_down_ack and ap_down nack correspond to
the IOP’s response to such an ap_down signal from the AP. They represent the acknowledgement
(ack) respectively the negative acknowledgement (nack) that the closing down has succeeded. The
ap-active channel is used by the IOP to request the AP to become active.

Timer Communication

The channels reset, wait, wait_int, i_reset, i_wait are all used to operate the timer. Basically,
the reset and i_reset channels are used to activate the timer, to start delivering time slots, while
the wait, wait_int and i_wait channels are used to dis-activate the timer to stop delivering time
slots. Different channels for resetting (reset and i_reset) respectively waiting (wait, wait_int
and i_wait) are needed due to different interpretations of these commands in different contexts.
When activated, the timer then delivers time slots to the IOP, the LSL driver and the interrupt
handlers when these issue signals on the t; channels.

Calc Communication

Finally, the calc channel is used by the LSL driver to “call” the calculator to perform its compu-
tation, as a procedure call.

5.1.3 The Shared Variables
Interrupts

The interrupt generator generates interrupts corresponding to data arriving on the links. Such
an interrupt is generated by setting the variable generated 1sl_interrupt to 1 (true). The LSL
interrupt handler then reacts on this by interrupting the IOP or the driver, whichever is running.
A result of such an interrupt is that the variable 1s1_interrupt is set to 1. The IOP reads the
value of this variable, and hence is triggered to deal with new data if it equals 1. In order for
the interrupt generator to generate interrupts at all, the variable enabled 1sl_interrupt must
be 1. Concerning the AP, there is a generated_ap_interrupt and an ap_interrupt, but there
is no enabled ap_interrupt. The AP itself plays the role as AP interrupt generator, and hence
sets the generated_ap_interrupt to 1, while the AP interrupt handler reacts to this by setting
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the ap_interrupt to 1. The variable some_interrupt is 1 whenever either ap_interrupt or
1sl_interrupt is 1.

The variable cur is used to secure that an interrupt handler gets higher priority than the process
it interrupts. Note that in this sense, the IOP and the driver have the lowest priority (0), while
the LSL interrupt handler has one higher (1), and the AP interrupt handler has the highest (2).
Hence, whenever the value of cur is 0, the IOP and the LSL driver are allowed to execute. When
the LSL interrupt handler starts executing, it sets the value to 1, whereby the IOP and driver
are no longer allowed to execute. The AP interrupt handler can further interrupt all the previous
processes, assigning 2 to cur, whereby all other processes with lower priority are denied to execute.

We said that the AP interrupt handler can interrupt the LSL interrupt handler. This is a truth
with modifications. In fact, it is not allowed to interrupt during the initialization phase of the LSL
interrupt handler. This is modeled by introducing a semaphore 1sl_interrupt_ex. It is used to
exclude the AP interrupt handler from interrupting the LSL interrupt handler during the latter’s
first activities.

Driver Control

The IOP sends messages to the LSL driver by assigning values to the variable 1s1_command with
the following meanings:

1. Initialize the driver
2. Close down the driver

3. Activate the driver

After initialization of the driver, the IOP can read the results of the driver’s activity (whether
it is still running and whether there are data or not) in the variables 1sl running and 1sl data.
Since the model is a reduction from a bigger model also involving the AP driver, we had early
in the design a need for maintaining a variable some_running, being true if either ap_running or
1sl running was true, and likewise we needed a variable some_data. These two variables have
survived after we have reduced the model.

IOP Mode

The IOP can be sleeping or awake. This is modeled via the variable sleeping, which is 1 whenever
the IOP is sleeping. The variable sleep_op is 1 whenever the IOP is supposed to go into sleep.
Finally, the variable sw_stand by is 1 whenever the IOP is supposed to go into stand by mode;
that is: sleeping and waiting for an interrupt.
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5.2 The IOP

The IOP, figure 5.2, starts being active, in the node active. In this node it does not need time
slots, hence the timer is supposed to be inactive. Note that although the IOP is in the node
active, and hence intuitively is active, from a technical point of view, we don’t see it as requiring
time slots, since it does not take any transitions.
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Figure 5.2: The IOP

Now it can receive an ap_down signal from the AP, ordering it to close down. It then proceeds
(up, left — referring to the approximate position on the figure) by resetting the timer — reset!,
indicating that now it wants processor time slots necessary to close down. It then initializes the
variables 1s1_running (to 1) and 1sl._data (to 0) preparing the activation of the LSL driver,
initially assuming that there are no data. Note the “priority (” guard — cur equals 0 — and the
time slot demand — t6! — requiring 6 micro seconds to initialize these variables. When the driver
later returns, it will have set the variable 1s1_running to 0, and now the IOP can check the value
of 1s1 data. The driver is, however, first activated with the assignment of 2 (close down) to the
variable 1s1_command in the edge leading to the node wait_for _down. In this node the IOP waits
for the driver to finish its job. If at that point 1s1l_data equals 1 there is data, and the IOP must
activate the driver — 1s1_command is assigned the value 3 — and it must respond to the AP with a
negative acknowledgement — ap_down nack!.

If on the other hand 1s1 data equals 0, then there are no data on the link, and the IOP can
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proceed successfully the closing down. It acknowledges via an ap_down_ack! signal to the AP and
goes to the node insert noop (up, right). A possible trace from here leads to the node stand by,
where the IOP is sleeping, and can only be wakened by an interrupt. The waiting for an interrupt
is done by issuing a wait_int! signal to the timer just before entering the stand by node. When
an interrupt occurs thereafter, the timer will ensure that the IOP is re-activated immediately.

If on the other hand, before reaching the stand by node, an interrupt has already occurred, then
the IOP will avoid going into that node and instead go directly to the wake_up node. Hence, in this
node we assume that an interrupt has occurred, and now the LSL driver has to be re-started, since
apparently there must be data. This means re-initializing the variables 1s1_running and 1s1_data,
and then assigning the value 1 (initialize) to 1s1_command. In the node wait_init _response, the
IOP then waits for the LSL driver to return. If there is data — 1s1l_data equals 1 — the AP is
asked to become active — ap_active! — and the IOP goes into the node active. Note that when
entering this node, a wait! signal is issued to the timer to dis-activate it. If on the other hand
there are no data — 1sl_data equals 0 — then what has been encountered is noise, and the node
noise is entered. In this node the IOP wants to close down, but before doing this, the driver
is asked to close down — 1sl_command is assigned the value 2. The IOP then waits in the node
observe_status for the drivers response.

Now, if there is data — 1s1l_data equals 1 the AP is activated — ap_active! — and the node
active is entered. If on the other hand there are no data — 1sl_data equals 0 — then the IOP
returns to the node insert noop (up, right), ready to close down (if an interrupt does not occur,
etc.).
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5.3 The AP

The AP, figure 5.3 has been simplified by only focusing on a few of its functionalities.
First of all, it is capable of producing interrupts, by assigning the value 1 to the variable
generated ap_interrupt. Note that the local variable no_ap_ints (number of AP interrupts)
keeps track on the number of interrupts generated, and in the presented model, the AP is only al-
lowed to issue one interrupt. During the verification, we experiment with this bound, occasionally
removing the bound.

AP

ap_active?

no_ap_int
gener at ed
nt

s <1
_ap_interrupt :=1
no_ap_ints no_ap_ints + 1

ap_down_nack?

ap_down! &(ﬁma&k

ap_down_ack?

ap_active?

Figure 5.3: The AP

The AP can also issue an ap_down! signal to the IOP. If it receives a positive acknowledgement
— ap_down_ack? — it then enters the stand by node, from where it can leave in two ways. Either
because it receives an ap_active? (become active) signal from the IOP, or because it simply non-
deterministically decides to become active. This non-deterministic choice represents an abstraction
from details: that certain events may occur that triggers the AP to become active.

Note that the AP runs in parallel with the kernel, and hence does not have cur guards and does
not communicate with the timer.

22



5.4 The LSL Interrupt Handler

The LSL interrupt handler, figure 5.4, is triggered by the variable generated 1sl interrupt
becoming 1. Recall, that this variable is set by the interrupt generator, corresponding to the arrival
of data on the link. The requirement that this variable equals 1 is expressed as a guard on the edge
leading out from the initial node 1s1_int_service. Another guard is that enabled 1sl_interrupt
equals 1. Furthermore, the variable cur is required to be 0, corresponding to the fact, that the
LSL interrupt handler can only interrupt the IOP and the LSL driver: it cannot interrupt the IIC
interrupt handler (in case we had included this), and it cannot interrupt the AP interrupt handler.
The value of cur becomes 1 to model the fact that neither the IOP nor the LSL driver can now
execute. The variable 1sl_interrupt_ex is assigned to 1 to mutually exclude the AP interrupt
handler to interrupt while the LSL interrupt handler starts executing. It is assigned to 0 again a
few edges later. Finally, the timer is reset — i_reset! — to measure time and deliver time slots.
Another reset channel is used than the one the IOP uses (which is reset), this will be explained
in section 5.9.

LSL_Interrupt_Handler

Isl_int_service

cur == 0 i
enabl ed_| sl _interr
generated_| Sl _inte

upt == 1
rrupt == 1
cur ;=
I'sl _interrupt_ex :=1
i _reset!
. interrupt_received
cur == 1
t1
sleeping == 0
awake
cur == 1
t13! .
enabled_| sl _interrupt := 0
generated_| Sl _interrupt := 0
I'sl _interrupt™:=1
IslZinterrupt ex := 0
sone_interrupt :=1
cur == 1 check_stand_by
cur == 1

I _Wwait!
sw_st and_by
cur := 0

qur == 1 eur == 1
i\wait! _
sWastand by := 0 sleep_op := 0
curxz 0

clear_stand_by

Figure 5.4: The LSL Interrupt Handler

From the node interrupt_received there are two edges, depending on the value of sleeping.
If this variable equals 1 (the IOP is sleeping) then 900 us is used to restart the IOP.

In the next edge, from the node awake, the 1sl_interrupt variable is assigned the value 1
(together with some_interrupt) such that the IOP can detect the interrupt. Also, the AP interrupt
handler is now allowed to interrupt, by setting the variable 1s1_interrupt_ex to 0. What happens
next is that in case the IOP is in stand by mode — sw_stand by equals 1 — and hence is waiting for
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an interrupt, this situation is changed now. The variable sleep_op is assigned 0 to indicate that
the IOP should not sleep now.
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5.5 The AP Interrupt Handler

The AP interrupt handler, figure 5.5, is similar to the LSL interrupt handler, though there are a
few differences.

AP_Interrupt_Handler old cur == 0
cur—: =10

I _wait

ap_int_service

generated ap interrupt == 1

I’'sl _interrupt _ex ==
old_cur == 1| generated_ap_interrupt := 0
cur—:=1 i"_reset!
‘.(:sa_cw
cur == 1
t1!

old cur :=1
cur—:= 2

t 900!
sleep!ng == %
sl eeping : = \‘

sw_stand_by == 0

t 6!
sw stand_by == 1

insert_noop

t7!

sleep_op := 0
sw_stand_by := 0
clear_stand_by

Figure 5.5: The AP Interrupt Handler

First of all, since there is no enabled ap_interrupt variable there is no guard on this being 1.
The AP interrupt handler is always enabled. Also, there is no guard on the cur variable, meaning
that the AP interrupt handler basically can interrupt at any moment. However, not when the LSL
interrupt handler is starting, represented by the guard requiring that 1sl_interrupt_ex is 0. The
AP interrupt handler cannot be interrupted itself, modeled by assigning 2 to cur, and later by
disabling the LSL interrupt handler.

Second, before assigning the value 2 to the variable cur, the old value must be remembered — in
the variable old_cur. This is necessary in order to later restore this value in cur when returning.
Note that this is not necessary for the LSL interrupt handler since it can only interrupt the IOP
and the driver, that is: when cur equals 0, while the AP interrupt handler can interrupt also the
LSL interrupt handler (when cur equals 1). When returning, the value of o1d_cur also determines
whether the timer should be signalled — i_wait! — since if it equals 1, it means that the LSL
interrupt handler has been interrupted, and in that case the timer should just continue to deliver
time slots to that. This will be explained in section 5.9.
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5.6 The LSL Interrupt Generator

The interrupt generator, figure 5.6, generates LSL interrupts by assigning 1 to the variable
generated 1sl_interrupt. Each such interrupt indicates the arrival of data on the low speed
link. There is an upper bound on the number of such interrupts, in this case 2, and the local
variable no_lsl_interrupts, keeps track on the number of interrupts generated. The bound is
removed in certain of the verifications.

Interrupt_Generator

no Isl ints <2

enabled | sl _interrupt == 1

generated ISl _interrupt :=1

no_Isl_ints :=no_lsl_ints + 1
generate

Figure 5.6: The Interrupt Generator
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5.7 The LSL Driver

The LSL driver, 5.7, is triggered to execute when the IOP assigns values in the domain {1, 2,3} to
the variable 1s1_command. Recall the meaning of these values: 1 = “Initialize”, 2 = “Close Down”
and 3 = “Activate”.

LSL_Driver
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Figure 5.7: The LSL Driver

Note that the driver has lowest priority, and hence can only execute when the variable cur
has the value 0. Now, in case 1s1_command has the value 3 (Activate), the driver just stays in
stand by mode. This is an abstraction of the reality, indicating that we are not interested in the
drivers response to such activation commands. When on the other hand 1s1_command has the
value 1 (Initialize) or 2 (Close Down), the driver goes to the node up_down received. Note that
its behaviour is identical in these two cases: it is supposed to check whether there are data on the
link or not. This examination can terminate immediately (taking 1 us in the model) or it can take
25000 us if there are data, or noise on the link.

From the node react there are two edges leading out. The upper edge assigns 0 to 1sl _running
and 1sl data, meaning that no data have been detected on the link. The lower edge represents
the fact that data have been detected, assigning 1 to these variables. The choice between these
two edges is non-deterministic, corresponding to an abstraction from the details of the link: rather
than modeling the arrival of data explicitly, we let the driver decide non-deterministically whether
data have arrived or not.

The current version of the UPPAAL language does not allow edge guards that are disjunctions
of predicates. For example, in certain places we need guards of the form (assuming a full model
including the IIC component):

1sl_running or iic_running
and similarly:

1lsl_data or iic_data
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Since this is not allowed, we have introduced the two variables some running and some_data,
which we make sure represent the corresponding disjunctions at any moment. Hence, in guards we
can instead write some_running and some_data instead of the above disjunctions. To update the
variables some_running and some_data, we have introduced the component named Calc, and the
driver communicates to this component via the calc! signal. The Calc component is only called
when a running or a date variable is assigned the value 0, since when one of these is assigned 1,
we know for sure that the corresponding some variable becomes 1.
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5.8 The Calculator

The calculator, fig 5.8, calculates the value of some data and some running when triggered by a
signal on the calc channel. All nodes are committed reflecting that this models a procedure that
terminates instantly without consuming time. Note that the presented Calc is a reduction of a
more complicated one involving also the corresponding IIC variables. Hence, in the current setting
with only an LSL driver, the Calc component is not really needed.

Calc

(Dccac_data

A
c:calc_running c.continue
Isl _data == 1

I'sl_running == 0 Isl _data == 0
sonme_running := 0 sone_data := 0

cal c?

Figure 5.8: The Data/Running Calculator
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5.9 The Timer

The Timer, figure 5.9, is in its basic form designed like the Timer in section 3.3, figure 3.3. That
is, there is a node called go, in which time cannot progress, and from this leaves edges, one for
each time slot to be delivered.
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Figure 5.9: The Timer

In addition, there is a node idle in which time can progress without any restrictions. The
idea is, that when the IOP is either active (in the node active) or is waiting for an interrupt (in
the node stand_by), time can progress, and in order for that to be allowed, the timer must be
“switched off” by putting it into the idle node. Initially the timer is in the idle node.

Furthermore there is a local variable called processing, which at any moment is true if and
only if the IOP is waiting for an interrupt in the node stand by or is powering up or down. In other
words, it is true if the IOP is not in the node active. In case an interrupt occurs, and terminates,
if processing is 1, the IOP must be started immediately. If on the other hand, processing is
0 when an interrupt terminates, the IOP is in the node active, and hence it should stay there
without reacting immediately to the interrupt.

To model this behaviour, the switching on and off the timer is done by the IOP, and the interrupt
handlers by communication over the following channels.

The IOP uses the channels:

reset
wait
wait_int

The interrupt handlers use the following:

i_reset
i_wait

The IOP starts the timer with a reset! signal (and processing becomes 1), and switches it off
again with a wait! signal (and processing becomes 0) when the IOP goes back into the active
node. If on the other hand the IOP goes into the node stand by to wait for an interrupt, the timer
is switched off with a wait_int! signal (which does not set processing to 0, hence processing
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will still be 1 since the IOP is not in the active node). Note, however, that if an interrupt has
just occurred (some_interrupt equals 1) the idle node is not entered!.

An interrupt handler resets the timer with a i_reset! signal. The difference between this and
the reset! signal is, that i_reset! does not cause the variable processing to become 1, since
the activation of an interrupt handler does not affect whether the IOP is in the active node or
not. Finally, when an interrupt handler terminates, it yields a i wait! signal. In case processing
is 1, it means that the IOP needs to be started immediately, and in that case the timer stays in
the go node. On the other hand, if processing is 0, the IOP must be in the active node, and
hence should not react to the interrupt immediately, which is why the timer then goes back to the
idle mode.

IThis solution was introduced due to an error trace generated by UPPAAL in an early model where wait_int!
always made the timer go into the idle node. This turned out to block the IOP.
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5.10 The Configuration Declaration

The configuration declaration, figure 5.10, shows all the channels and variables with their types.
They have been divided into sections, one for each component in the system. This division is
informal and only shows to which component a variable belongs “most” in the authors opinion.

Config

/I Global
intcur,
sleeping,
sleep_op,
sw_stand_by;
I AP
chan ap_down; .
urgent chan ap_active,
ap_down_ack,
~ap_down_nack;
int generated_ap_interrupt,
no_ap_ints;
/I LSL_Driver
int Isl_command,
Isl_running,
Is|_data;
/I AP _Interrupt_Handler
int old_cur,
ap_interrupt;
/I LSL_Interrupt_Handler
int enabled_Isl_interrupt,
Isl_interrupt,
Isl”interrupt_ex;
/I Interrupt_Generator
int generated_Isl_interrupt,
no_lsl_ints;
/l Timer .
chan wait, wait_int,
i_wait, i_reset;
urgent chan reset;
chan t1, t2, t3, t5, t6, t7, t8,
t9, 113, t17, t18, t24, t37, t40,
t300, t314, t900, t25000,
t41 300, t640_840, t900_1100;
clockc; |
int processing;
/I Calc
chan calc; .
int some_running,
some_data,
some_interrupt;
system Power_Down_IOP, AP,
LSL_Driver,
AP _Interrupt_Handler,
LSL_Interrupt_Handler,
Interrupt_Generator,
Timer,
Calc;

Figure 5.10: The Configuration Declaration
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Chapter 6

Analysis wrt. Selected Properties

In this chapter we shall present the results of analyzing in UPPAAL the properties formulated by
B&O. The properties were originally named 1, 2a, 2b, 3, 4a, 4b, 5a, 5b, and 6 — 11, and we have
maintained this numbering. For each property, we first quote the property as B&O originally
formulated it, occasionally followed by a short explanation. Then follow the modifications to the
model needed to formulate the property in the UPPAAL logic. For example, it may be necessary to
add an observer, or to add new variables to the model, which then will occur in the property to be
verified. This property is then formalized in the UPPAAL temporal logic. Finally, the result of the
verification is described, including a commented error trace in case the property is not satisfied. In
a few cases (properties 1 and 11) no verification has been done, since the property turned out to be
trivially true — a fact that however only became clear to B&O after the model had been designed.
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6.1 Property 1
6.1.1 Property

sleeping must not change from 0 to 1 while sleep_op has the value 0.

6.1.2 Result

The property is trivially satisfied, which can be seen by observing the transition system, since
sleeping is only assigned the value 1 in one edge (within the IOP), and the guard for this edge
is exactly sleep_op == 1. However, this only became clear for B&O after having built the model.
It was decided not to verify the property due to its obvious truth.
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6.2 Property 2a

6.2.1 Property

There must be a path from active to stand by and vice versa.

6.2.2 Model Modifications

1. New declaration:
int stand_by_reached;

2. IOP changed: the assignment stand by reached := 1 has been added to the edge from
w_stand by to stand by, see figure 6.1 (up, right).

6.2.3 Property in UrPAAL Logic

E<> Power_Down_IOP.stand_by

E<> Power_Down_IOP.active and stand_by_reached ==

6.2.4 Result
The property is satisfied.
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Figure 6.1: Q2a — The IOP

36




6.3 Property 2b
6.3.1 Property

Every path from active to noise must pass through stand by.

6.3.2 Model Modifications

1. New declaration:
int active_debt;

2. IOP changed: the assignment active_debt := 1 has been added to the edge from active to
down_reached, see figure 6.2 (mid), and the assignment active debt := 0 has been added
to the edge from stand by to wake_up (up, right). The idea is, that when we leave from the
active node, this variable is 1 until it becomes 0 when passing though stand by. It should
always be 0 then, when entering noise.

6.3.3 Property in UrPAAL Logic

A[] Power_Down_IOP.noise imply active_debt ==

6.3.4 Result

The property is not satisfied. It turns out that the property is not a desired property, and hence
should not necessarily be satisfied.

The error trace generated demonstrates a sequence of events where the IOP reaches the node
insert noop (up, right) after having left the node active. At this position, an interrupt occurs
(some_interrupt == 1), and the IOP is therefore directed from the node check_interrupts to
wake_up without passing through stand by. From there, the node noise is reached (and the
variable active_debt still has the value 1 since we never took the edge leading out from stand by).
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Figure 6.2: Q2b — The IOP
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6.4 Property 3

6.4.1 Property

The variable sleeping must not change from 0 to 1 while 1sl _interrupt is 1 or
ap-interrupt is I.

6.4.2 Model Modifications

None.

6.4.3 Property in UprpAaAL Logic

A[] (Power_Down_IOP.check_noop and cur == 0 and
sleep_op == 1 and sleeping == 0)
imply (lsl_interrupt == 0 and ap_interrupt == 0)

This guard of the implication is the guard (except for sleeping == 0) of the only edge in the
system which assigns 1 to sleeping, namely the edge from check noop to w_stand by in the IOP,
see figure 5.2 (up, right).

6.4.4 Result
The property is satisfied.
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6.5 Property 4a
6.5.1 Property

The shortest way from down_expected to wait_init response does not take more than
1500 ps.

We want to observe traces, which pass through the node down_expected, goes “right” through
down verified since some data == 0, and then directly to wait_init response. Whether the
node stand_ by is passed or not is unimportant, although an interrupt has to have occurred, oth-
erwise the JOP will hang in the stand by node. This is what is meant by shortest way. The time
consumed on this route between down_expected and wait_init _response should not exceed 1500
[s.

Put differently, the property to verify is the following: if the IOP is in the node
down_expected, and some_data == 0 and some_interrupt == 1, then the IOP will be in the
node wait_init_response within 1500 us.

6.5.2 Model Modifications

1. New declarations:

chan obs_begin;
urgent chan obs_end;
clock clk;

2. IOP changed: we choose the node down_verified as starting point for the traces we want to
investigate, instead of the node down_expected, since we are really only interested in traces
going through the former, see figure 6.3 (mid, left). In order to signal to an observer (see
below) that the node down verified has been entered while an interrupt has occurred, we
add an edge leaving from, and going back to, this node with the label:

some_interrupt ==
obs_begin!

Second, the edge from issue_1sl up to wait_init_response (mid, right) has been split up
into two edges, inserting the new node signal_obs. This is done purely to add the new edge
obs_end!, signalling the observer again, when entering the node wait_init_response.

3. An observer automaton has been added, see figure 6.4. As soon as this observer receives an
obs_begin? signal from the IOP, it starts measuring the time through the variable clk. If
more than 1200 us passes before an obs_end? signal is received, the node bad is entered,
indicating that the 1500 us time limit will be passed before the node wait_init _response
will be reached. The reason for only counting 1200 us is due to the way communication with
the Timer automaton works: the obs_end! communication will actually be performed before
the time delay initiated with the preceding t300! communication (in the IOP) begins.

Note the extra obs_end? edges leading from start to good and from good to good in the
observer. These are introduced in order to avoid the observer to block the observed IOP.
They have no importance for the verification otherwise.

4. The AP and the interrupt generator allow an unbounded number of interrupts, see figures
6.5 and 6.6, where the guards involving no_ap_ints and no_1sl_ints, respectively, have been
removed.
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6.5.3 Property in UrPAAL Logic

A[] not Observer.bad

6.5.4 Result

The property is not satisfied. The error trace demonstrates a situation, where a single LSL interrupt
and 18 AP interrupts are generated in between the nodes down_expected and wait_init_response,
each interrupt consuming time. The error trace is as follows:

1.

2.

The IOP gets a ap_down signal from the AP, and starts the closing down procedure.

While the IOP is in node enable 1sl_interrupt, an AP interrupt occurs, just making it
possible to later get around the stand_by node; that is, now some_interrupt == 1. This
interrupt has no direct importance for the time failure demonstrated by this trace.

. The node down _verified is entered and the observer is signalled to start counting time. The

IOP continues to node wake_up, consuming 868 us (840 + 17 + 3 + 8).

. An LSL interrupt occurs.

The LSL interrupt is itself interrupted while in the node insert noop, by an AP interrupt
which consumes 28 (14+1413+6+7) time units, since stand_by == 1. Then follows 16 more
AP interrupts, each consuming 15 (1+1+13) time units, since now stand by == 0, yielding
240 ps all together.

After all the AP interrupts, the LSL interrupt continues, and returns. The LSL interrupt
itself has consumed 27 ps (1 + 13 + 6 + 7).

The IOP now continues to the node clear_int, consuming 24 us.
Now yet an AP interrupt occurs, and consumes 13 us(plus more of course).

At this point, 1200 us have passed, and the observer automaton goes into the bad node.

The verification takes 45 minutes.

41



Power_Down_IOP

clear_interrupts
0

cur [

oo
enabl ed | s!
generated_| s

o

dissble_Is_interrupt

cyr == 0
enabl ed | s
generated_| s

going_down

reset! check_intefrupts

) enable_|d_interrupt
ap_down Ack!

issue_down_Is

down_received

ur == 0
640_840!
onexdat a

o
t
s

dowfverified

sone interrupt == 1
obs_begi n!

ap_down_nack!

issue_active_commands

enter_active

cur == 0
wai t !

cur

back_to_active

re_enable_|sl_interrupt

o
some_r unni ng

swstand_by ;=0
0

Isl”data

ne_data
|_Funni ng
mE_runni g’ :

I'si
sol

=1

re_issue_|sl_down

wait_response

send_active_command

Figure 6.3: Q4a — The IOP

Observer

start

obs_begi n?
clk™="0

obs_end?
good

bad
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6.6 Property 4b
6.6.1 Property

The shortest way from down_expected to active does not take more than 1500 ps.

This property is similar to property 4a described in the previous section, both what concerns
formulation and solution. We want to observe traces, which pass through the node down_expected,
goes “left” through disable 1sl_interrupt since some_data == 1, and then directly to active.
This is what is meant by shortest way. The time consumed on this route between down_expected
and active should not exceed 1500 us.

Put differently, the property to verify is the following: if the IOP is in the node down_expected,
and some_data == 1, then the IOP will be in the node active within 1500 us.

6.6.2 Model Modifications

The same kind of modifications are done as for question 4a.

1. New declarations:

chan obs_begin;
urgent chan obs_end;
clock clk;

2. IOP changed: we choose the node disable 1sl _interrupt as starting point for the traces
we want to investigate, instead of the node down _expected, since we are only interested in
traces going through the former, see figure 6.7 (mid, left). In order to signal to an observer
(see below) that the node disable_1sl_interrupt has been entered we add an edge leaving
from, and going back to, this node with the label obs_begin!.

Second, the edge from enter_active to active (mid) has been split up into two edges,
inserting the new node signal obs. This is done purely to add the new edge obs_end!,
signalling the observer again, when entering the node active.

3. An observer automaton has been added, see figure 6.8. When the observer receives an
obs_begin? signal from the IOP, it may start measuring the time through the variable clk.
If more than 1500 us passes before an obs_end? signal is received, the node bad is entered.

Note the difference between this observer and the observer in figure 6.4 for property 4a. They
should each serve the same purpose, but in fact, the one presented here is more correct since
it will observe any obs_begin? signal from the IOP, while the one in figure 6.4 only will
observe the first one.

4. The AP and the interrupt generator allow an unbounded number of interrupts, see figures
6.5 and 6.6 from property 4a’s verification.

6.6.3 Property in UrpPAAL Logic

A[] not Observer.bad

6.6.4 Result

The property is not satisfied. The error trace demonstrates a situation, where 24 AP interrupts
are generated in between the nodes down_expected and active, each interrupt consuming time.
The error trace is as follows:

1. The IOP gets a ap_down signal from the AP, and starts the closing down procedure.
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2. The node down_expected is entered, and then the node disable 1sl_interrupt, where after
the observer is signalled to start counting time. The IOP continues to node enter_active,
consuming 1140 us (3 + 37 + 1100).

3. Now 24 AP interrupts occur, each taking 15 us (1 + 1 + 13), since stand by == 0. This
yields in total 360 us.

4. At this point, 1500 us have passed, and the observer automaton goes into the bad node.

The verification takes 7 minutes.
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Figure 6.7: Q4b — The IOP

45



Observer

obs_end? O

obs_end? clk™="0
)wait response

(clk == 1500)

clk == 1500

O

bad

Figure 6.8: Q4b — The Observer

46




6.7 Property b5a
6.7.1 Property

The shortest way from observe status to wait_init response does not take more
than 1500 ps.

This property is similar to properties 4a and 4b described in the previous sections, both what
concerns formulation and solution. We want to observe traces, which pass through the node
observe_status, goes “right and up” through insert moop (up, right) since some_data == 0,
and then down to wait_init_response. Note that an interrupt has to have occurred in order for
the IOP to get past the stand by node. This is what is meant by shortest way. The time consumed
on this route between observe status and wait_init _response should not exceed 1500 us.

Put differently, the property to verify is the following: if the IOP is in the node
observe_status, and some_data == 0 and some_interrupt == 1, then the IOP will be in the
node wait_init_response within 1500 us.

6.7.2 Model Modifications

The same kind of modifications are done as for questions 4a and 4b.

1. New declarations:

chan obs_begin;
urgent chan obs_end;
clock clk;

2. IOP changed: In order to signal to an observer (see below) that the node observe_status
has been entered while an interrupt has occurred, see figure 6.9 (down, right), we add an
edge leaving from, and going back to, this node with the label:

some_interrupt ==
some_data ==
obs_begin!

Note that we also require that some_data == 0 since this will guarantee that the shortest
way is chosen.

Second, the edge from issue_1sl up to wait_init _response (mid, right) has been split up
into two edges, inserting the new node signal obs. This is done purely to add the new edge
obs_end!, signalling the observer again, when entering the node wait_init response.

3. An observer automaton has been added, see figure 6.10. When the observer receives an
obs_begin? signal from the IOP, it may start measuring the time through the variable clk.
If more than 1500 us passes before an obs_end? signal is received, the node bad is entered.

6.7.3 Property in UrPAAL Logic

A[] not Observer.bad
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6.7.4 Result

The property is satisfied with a limited number of interrupts (1 AP interrupt and 2 LSL interrupts).
A verification with an unlimited number of interrupts were tried, but this had not terminated
after 12 hours. An attempt with 15 AP interrupts and 1 LSL interrupt had not terminated after 5
hours. An attempt with 10 AP interrupts and 0 LSL interrupts had not terminated after 2 hours.
It is quite likely, that an error trace similar to those for properties 4a and 4b can be generated
if there is no bound on the number of AP interrupts that can occur.
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Figure 6.9: Q5a — The IOP
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6.8 Property 5b
6.8.1 Property

The shortest way from observe_status to active does not take more than 1500 ps.

This property is similar to properties 4a, 4b and 5a described in the previous sections, both what
concerns formulation and solution.
We want to observe traces, which pass through the node observe status, goes “left and down”
through clear_1sl_interrupt (down, right) since some data == 1, and then up to active. This
is what is meant by shortest way. The time consumed on this route between observe_status and
active should not exceed 1500 us.

Put differently, the property to verify is the following: if the IOP is in the node observe_status,
and some_data == 1 then the IOP will be in the node active within 1500 us.

6.8.2 Model Modifications

The same kind of modifications are done as for questions 4a, 4b and 5a.

1. New declarations:

chan obs_begin;
urgent chan obs_end;
clock clk;

2. IOP changed: In order to signal to an observer (see below) that the node observe_status
has been entered, see figure 6.11 (down, right), we add an edge leaving from, and going back
to, this node with the label:

some_data ==
obs_begin!

Note that we also require that some_data == 1 since this will guarantee that the shortest
way is chosen.

Second, the edge from back_to_active to active (mid) has been split up into two edges,
inserting the new node signal obs. This is done purely to add the new edge obs_end!,
signalling the observer again, when entering the node active.

3. An observer automaton has been added, see figure 6.12. When the observer receives an
obs_begin? signal from the IOP, it may start measuring the time through the variable clk.
If more than 1500 us passes before an obs_end? signal is received, the node bad is entered.

4. The AP and the interrupt generator allow an unbounded number of interrupts, see figures
6.5 and 6.6 from property 4a’s verification.

6.8.3 Property in UrpPAAL Logic

A[] not Observer.bad
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6.8.4 Result

The property is not satisfied. The error trace demonstrates a situation, where 79 AP interrupts
are generated in between the nodes observe_status and active, each interrupt consuming time.
The error trace is as follows:

1. The IOP gets an ap_down signal from the AP, and starts the closing down procedure.

2. The node observe_status is entered, where after the observer is signalled to start counting
time. The IOP continues to node clear_1sl_interrupt, consuming 1 us.

3. An LSL interrupt occurs, consuming 14 us (1 + 13).
4. The IOP continues to back_to_active, consuming 314 us.

5. Now 79 AP interrupts occur, each taking 15 ps (1 + 1 + 13), since stand by == 0. This
yields in total 1185 us.

6. At this point, 1500 us have passed, and the observer automaton goes into the bad node.

The verification takes 2hours and 40 minutes.
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Figure 6.11: Q5b — The IOP
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6.9 Property 6
6.9.1 Property

If the last value of the variable 1s1_command has been 1 or 3 (driver starting commands),
then the value of sleeping must not change from 0 to 1.

6.9.2 Model Modifications

1. New declarations:
int old_1lsl_command;

2. TIOP changed: The variable 01d_1s1_command has been assigned to in each of those 5 edges
which assign a value different from 0 to 1s1_command (0old_lsl_command gets the same value).
In this way, 01d_1s]1_command will always hold the last value different from 0 assigned to
1s1l_command. See figure 6.13.

6.9.3 Property in UrPAAL Logic

A[] (Power_Down_IOP.check_noop and cur == 0 and
sleep_op == 1 and sleeping == 0)
imply
old_lsl_cmd ==

The condition of the implication is the guard (except for sleeping == 0) of the only edge in the

system which assigns 1 to sleeping, namely the edge from check noop to w_stand by in the IOP,
see figure 5.2 (up, right).

6.9.4 Result
The property is satisfied.
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Figure 6.13: Q6 — The IOP
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6.10 Property 7
6.10.1 Property

If the last value of 1s1_command has been 3 (activate driver), then the next value must
not be 1 (initialize driver), and vice versa.

6.10.2 Model Modifications

1. New declaration:

int old_1lsl_command;

2. TIOP changed: The variable 01d_1s1_command has been assigned to in each of those 5 edges

which assign a value different from 0 to 1s1_command (0o1d_1sl_command gets the same value).
In this way, 01d_1s1_command will always hold the last value different from 0 assigned to
1s1l_command. See figure 6.14.

Furthermore, consider those nodes from which there is an edge that assigns 1 or 3 to
1sl command. These are the nodes issue_active_commands (down, left), issue_lsl_up
(mid, right) and send_active_command (down, right). If the property shall hold, then a
pre-condition for each of these edges is that the last value of 1s1_command is not in conflict
with the new value (1 is in conflict with 3, and vice versa). Hence, for each of these nodes,
an error node is introduced and an edge leading to it in case the pre-condition is violated.
That is, the new nodes are: bad_start_cmdl, bad_start_cmd2, and bad_init_cmd.

For example, take the node issue_active_commands (down, left) from which an edge assigns
3 to 1sl_command. A new edge then leads to the new error node bad_start_cmdl in case the

last value assigned was 1 (old-1sl_command == 1).

6.10.3 Property in UrPAAL Logic

A[] not Power_Down_IOP.bad_start_cmdl
A[] not Power_Down_IOP.bad_start_cmd?2

A[] not Power_Down_IOP.bad_init_cmd

6.10.4 Result
The property is satisfied.
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Figure 6.14: Q7 — The IOP
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6.11 Property 8

6.11.1 Property

No more than 1500 ps must pass from an interrupt occurs until all drivers are active.

6.11.2 Model Modifications

1. New declarations:

clock clk;

chan 1sl_interrupt_set,
1sl_driver_on,
1sl_driver_off;

urgent chan lsl_driver_is_on;

2. LSL interrupt handler changed: In order to signal to an observer (see below) that an LSL
interrupt has occurred, the communication 1s1_interrupt_set! has been added, together
with the node signal_obs, see figure 6.15.

3. LSL driver changed: In order to signal to a driver status observer (see below) when the
driver becomes active and when it becomes inactive, the communications 1sl driver_on!
and 1sl driver off! have been added on relevant edges, see figure 6.16. Note how the
value of 1s1l_command determines whether the driver is turned off or not when leaving the
driver, and that for the same reason the resetting 1s1_command := 0 has been moved to the
end.

4. An LSL driver observer has been added, see figure 6.17. This automaton continuously shows
whether the driver is active (node on) or inactive (node off) by responding to the signals
1sl driver on! and lsl driver off! from the driver.

In addition, a communication to an observer (see below) is always possible on the urgent
channel 1s1 driver_is_on when in node on.

5. An observer automaton has been added, see figure 6.18. Upon receiving an
1sl interrupt set? signal from the LSL interrupt handler, it may start measuring the
time through the variable clk. If more than 1500 us passes before an 1sl driver_is_on?
signal from the LSL driver status observer is received, the node bad is entered. The extra
1lsl_interrupt_set? edge leaving and going back to the start node allows the observer to
measure any interrupt, and not just the first one. The extra edge on the node good ensures
that the observer does not block the model it observes.

6. The interrupt generator only allows 1 interrupt, see figure 6.19.

7. IOP changed: It is necessary to add the guard 1lsl_command == 0 on edges following an
assignment of the form 1sl _command := 3, in order to enforce the corresponding activate
driver edge in the LSL driver to be taken. It concerns the edges starting in send nack (down,
left) and back to_active (down, right), see figure 6.20. This is really a modification that
should be added to all models, although it has no importance for the other verifications since
activating the driver in those is just an identity edge (from the LSL driver node stand by
and back to that node).

6.11.3 Property in UrPAAL Logic

A[] not Observer.bad
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6.11.4 Result

The property is satisfied in a model restricted to allow 1 AP interrupt and 1 LSL interrupt.

A verification has been tried with 1 AP interrupt and 2 LSL interrupts, but that took a hour
and 140 MB without any termination.
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Figure 6.15: Q8 — The LSL Interrupt Handler
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Figure 6.16: Q8 — The LSL Driver
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6.12 Property 9

6.12.1 Property

1. It must be possible for both interrupt handlers to be in the node insert noop at
the same time, while in addition sleep_op is 0.

2. It must be possible for both interrupt handlers to be in the node insert noop at
the same time, while in addition sleep_op is 1.

3. If both interrupt handlers are in the node insert _noop at the same time, then the
IOP will be in one of the nodes: set_stand by, check_interrupts, check noop,
w_stand by, stand_by, or wake_up.

6.12.2 Model Modifications

None.

6.12.3 Property in UrPPAAL Logic

E<> AP_Interrupt_Handler.insert_noop and
LSL_Interrupt_Handler.insert_noop and
sleep_op ==

E<> AP_Interrupt_Handler.insert_noop and
LSL_Interrupt_Handler.insert_noop and
sleep_op ==

A[] (AP_Interrupt_Handler.insert_noop and
LSL_Interrupt_Handler.insert_noop)
imply

(Power_Down_IOP.set_stand_by or
Power_Down_IOP.check_interrupts or
Power_Down_IOP.check_noop or
Power_Down_IOP.w_stand_by or
Power_Down_IOP.stand_by or
Power_Down_I0OP.wake_up)

6.12.4 Result
1. Not satisfied.

2. Satisfied.
3. Satisfied.

It turns out that property 1 is wrongly formulated, and probably should not be satisfied, just
as shown by the verification.
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6.13 Property 10
6.13.1 Property

It must be possible to come from the node noise to the node stand by.

6.13.2 Model Modifications

1. New declarations:
int noise_reached;

2. IOP changed: the assignment noise reached := 1 has been added to the edge from node
data_expected to node noise, see figure 6.21 (mid, right).

6.13.3 Property in UrPAAL Logic

E<> Power_Down_IOP.stand_by and noise_reached ==

6.13.4 Result
The property is satisfied.
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6.14 Property 11
6.14.1 Property

1 should not be possible to come from the node stand by to the node active without synchronizing
on the channel ap_active.

6.14.2 Result

The property is trivially satisfied by observing the transition system. However, this only became
clear for B&O after having built the model. It was decided not to verify the property due to its
obvious truth.
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Chapter 7

Evaluation

This chapter contains an evaluation of the project, as seen from each of the two partners: B&O
and AUC.

7.1 B&O’s Evaluation

This section contains B&Q’s comments on the project. It is mostly a direct translation of an email
in Danish received from Johnny Kudahl. In certain places, we have added explanatory text [in
squared brackets].

7.1.1 General Comments
Method and Language Syntax

The method and the language syntax is easy to work with, and it is relatively easy to formulate
ones design/code in UPPAAL. In UPPAAL everything is executed in parallel and with the same
priority. The model is perhaps missing some features for serial evaluation with different priorities.
In general I find that UPPAAL as a method is “strong” and very usable. We have a big interest in
following the future development of UPPAAL.

Model Building

Where I gained most from this work was during the building of the the model. During this phase,
you are forced to consider many situations, that you would normally not otherwise have considered.
During the development of the model, I found 3 errors, a fatal one, and two minor. The fatal error
was that I did not reinitialize the drivers after a power down request to a driver that was processing
data. The two minor errors were that I had wrongly swapped two return values in a function. These
errors would definitely also have been found during the verification.

The Typing Phase

Because this phase was mainly done by you [AUC], T don’t have a big experience with the tool. I,
however, got the impression that the user interface was a bit heavy to work with. Another thing
I noticed was, that there was no version control in the tool. It would be nice, if one could lock
versions. Also, one has to make a new copy of the main model, for each property verified [in order
modify it, for example by adding an observer or exrtra variables]. That makes it difficult to keep
track of the models, and to maintain them when changes are made to the main model.

If one looked to the object oriented world, and regarded the main model as the main class
instead, then all other models could then inherit from this main class, adding and removing the
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facets necessary to formulate the property. Changes in the main model will then affect all special-
izations of it. It should though be possible to “freeze” certain areas in the sub models, such that
these areas are not changed by changes in the main model.

It would also be an advantage, if one could divide a system into subsystems. It would increase
comprehensibility, and it would be possible to focus on part of a system or on the whole system
at a higher level.

The Verification Phase

This is UPPAAL’s other strength. After the model has been formulated it is relatively easy to add
or change properties to be verified. That some properties take time to verify is not so important,
as long as one gets an answer.

7.1.2 The Individual Properties

I have tried to prioritize the properties:

Very Important (affecting software and hardware). Such properties are 4a, 4b, 5a, 5b and
8. These properties are important since they give a clear indication of how much noise the
module can stand without data are lost on the low speed link (said in other words: how
many interrupts can the system tolerate without exceeding the famous 1500 us limit).

This analysis gave the result, that in the worst case there could come 1 LSL interrupt and
18 AP interrupts [this is the smallest number of interrupts leading to the 1500 ps limit being
crossed]. This gives a max AP interrupt frequency of 1500 us divided by 18 which is 83 us
(12 KHz). It is now my task to maintain this frequency.

Properties 1, 3 and 11 also belong to this group. The difference between these and the
previous is, that they more or less were answered during the development of the model.
Before we started developing the model, it was not possible to see whether these properties
were satisfied.

Important for the design of power down (software only). These are properties 6 and 7. If
the properties were not satisfied, it would require a re-design of either the power down [the
IOP] or the driver. The consequences would, however, only be software related — the hardware
would still work.

Very Important (software and hardware) but “known” to hold. These are properties 2a
and 9 (9.1 is, however, wrongly formulated). If these properties were not satisfied, the whole
idea behind the power down design would be wrong. These properties have therefore been
highly considered during the design of the power down. One can say that the properties were
given to UPPAAL well knowing that they would be satisfied.

Ups, properties being wrongly formulated. These are properties 2b, 9.1 and 10. Concerning
properties 2b and 9.1, T had expected another outcome than the verification gave. Concerning
property 10, I have not yet been able to figure out what I was thinking when formulating it.

7.2 AUC’s Evaluation

7.2.1 UprPAAL as a Communication Medium

The first session we had with B&O started with an informal discussion of the model, where basically
Johnny Kudahl explained how it worked, and we asked questions. Within an hour we (AUC) felt
a need to get a deeper understanding, and at that point it was suggested to start writing down
parts of the model in UPPAAL, directly on the white board. Johnny Kudahl was instructed in
UPPAAL’s notation, it took 15 minutes, and thereafter we were basically all communicating in the
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same language. It appeared unproblematic to make Johnny Kudahl work with the notation, and
as a communication medium between AUC and B&O it appeared excellent.

7.2.2 Verification Results

The protocol appeared to satisfy all the properties stated (at least those that were correctly for-
mulated), and our feeling was, that the protocol was very securely designed. One of the potentially
un-secure points was the consequences of too many interrupts during powering up and down. Some
of the questions were in fact formulated to examine this. The result was a couple of constants sug-
gested by UPPAAL, indicating the maximal number of interrupts allowed within certain intervals.
B&O will now try to obey these constants. In other cases, properties were rejected, and then
discovered to be wrongly formulated. Hence, in these cases, no bug was discovered, but an unex-
pected — and correct — behaviour of the system was observed. Such results help to understand the
working of the protocol.

In general, we felt that formulating the model and verifying the properties increased B&O’s
confidence in the design. The only bugs identified were caught by B&O during the modeling.
These errors would, however, have been caught during verification also, had they not been corrected
beforehand.

7.2.3 The UprrPAAL Language

As part of the result of this work, we have suggested ways of modeling timed transitions and
interrupts. The modeling is relatively simple, and models are written in a style pretty close to the
way one would probably write them, if UPPAAL had been designed to support these constructs.
In fact, interrupts are easy to model in UpPAAL (using committed nodes for example); but it is
the combination of timed transitions, time slicing and interrupts, that makes the need for the cur
variable. Hence, it is really the combination of timed transitions and time slicing that causes the
extra modeling. We do not know of any other model checker that provides these facilities as we
needed them in this example.

7.2.4 The UrPAAL Environment

UPPAAL needs a version control system for deriving sub models from a full model. Sub models are
derived for two reasons:

1. abstraction: when reducing a model that is too big for verification to a model that is small
enough.

2. wverification: when modifying a model in order to formulate a property to be verified, perhaps
by adding an observer.

In fact, we worked with 3 models due to abstraction and 12 models due to verification. In parallel
with the present work, a tool has been designed which automatically generates test-automata from
a richer UPPAAL logic, hence, in the future it is expected that sub model derivation will mostly be
caused by abstraction only. However, even in this case, version control seems very important, and
in addition, a tool which supports defining the abstractions themselves seems quite useful. That
is, basically a tool that allows to “throw out” code, restrict loops by putting an upper bound on
the number of iterations allowed, etc., in an easy way.
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Chapter 8

Conclusion

During a period of 3 weeks, a model of B&O’s Power Down protocol was developed and verified
using the UPPAAL language and model checker. The first week consisted of an intense collaboration
between AUC and B&O, where the B&O representative visited AUC. During this week, a first
sketch of the model was written down in UPPAAL’s language. The model was based on examination
of the C-code implementation. The work carried out during the following two weeks was mainly
carried out by AUC.

Hence, during the second week, a technique was introduced for dealing with timed transitions
and interrupts. During this same week, the model was reduced by omitting certain components
in order to obtain a model being verifiable within reasonable time and memory space. In other
words, at the end of the second week, a model was produced that was ready for verification.

At the beginning of the third (and last) week, various properties to be verified were formulated
by B&O in natural language. These were then translated into the UPPAAL temporal logic, together
with various modifications to the model, and all verifications were then carried out.

The UPPAAL notation appeared to be a good communication medium between AUC and B&O.
The protocol was verified correct wrt. the 15 properties formulated by B&O, and although no bugs
were identified, various critical time constants were identified, which will be of help to B&O in
their design process. Various unexpected, but correct, behaviours were furthermore demonstrated,
challenging the understanding of the protocol. Overall, the experience appeared to increase B&Q’s
confidence in their design. The fact that 3 errors were caught during the modeling phase suggests
that just specifying a system can be very informative. In fact, B&O claimed they had got a better
understanding of their system this way.

What concerns the UPPAAL tool set, we anticipate investigating techniques for version control,
(keeping track of several related models), and we consider tool support for defining abstractions.
Both themes appear non-trivial in fact. Concerning the UrPPAAL language, a technical contribution
of the work is a way of modeling timed transitions and interrupts in a setting where several processes
share one processor. More generally, transitions that take time seems to be a useful concept. We
also have frequent discussions as to what a model checking language should look like in order to
be convenient to work with. The results of these discussions will be documented elsewhere.
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